TRIXANOLIDE AND GERMACRATRIENE DERIVATIVES FROM TRIXIS GRISEBACHII

ELMIRA C. DE RISCALA, CÉSAR A. N. CATALÁN, PABLO R. LEGNAME,* ALICIA B. GUTIÉRREZ† and WERNER HERZ†

Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, S. M. de Tucumán 4000, Argentina;* Fundacion Miguel Lillo, Miguel Lillo 205, S. M. de Tucumán, Tucumán 4000, Argentina; †Department of Chemistry, The Florida State University, FL 32306 U.S.A.

(Received 18 November 1988)

Key Word Index—Trixis grisebachii; Compositae; Mutisieae; trixanolides; trixanes; germacratrienes; sesquiterpenes; dammaranes; triterpenes.

Abstract—Chemical investigation of the aerial parts of *Trixis grisebachii* afforded a number of new sesquiterpene diand triesters related to trixanolide and two new tetraesters derived from germacrene A, as well as some known compounds including dipterocarpol and 3-O-acetyldammarenediol-II.

INTRODUCTION

Sesquiterpenes based on the trixane skeleton 1 appear to be characteristic metabolites of the New World subtribe Nassauviinae of Mutisieae [1-11]. In the following we describe our work on *Trixis grisebachii* O. Kuntze (syn. *Trixis frutescens* var. *cacalioides* Griseb.), a member of the largest genus within the subtribe. Isolated from the aerial parts were the acid 2, two triesters 3a, b, 10 diesters 4a-d, 4e or 4e', 4f or 4f', 4h, 4i or 4i', 4j or 4j', all based on the trixane skeleton, two tetraesters 5a,b derived from germacrene A, dipterocarpol and 3-O-acetyldammarenediol-II as well as common triterpenes and plant sterols. Compound 2 has been obtained previously as the methyl ester from T. antimenorrhea and T. vautheri [4] and as the acid from T. paradoxa [7].

RESULTS AND DISCUSSION

That the triesters 3a and 3b were lactones of the socalled trixikingolide or trixanolide type [2-4] carrying an ester function at C-9 as well as at C-3 and C-14 was evident from a comparison of their ¹H NMR spectra (Table 1) with spectra of diesters of type 4 from T. grisebachii (vide infra) and in the literature [4], the triplet of H-9 being displaced from near $\delta 4.4$ to 5.28. Decoupling established the sequence H-1a, b through H-4 and H-7 through H-10, with H-7 also being coupled to H-14 at δ 5.50. The nature of the three ester functions of 3a and 3b could be deduced from the mass spectrum, the ¹H NMR and, in case of 3a, the ¹³C NMR spectra (Table 2). Allocation of the two β -hydroxyisovaleryl groups of 3a to C-3 and C-9 was made possible by partial hydrolysis of 3a (K₂CO₃-MeOH) to 3c with loss of the valerate and a concomitant upfield shift of the H-14 resonance from δ 5.50 to 4.54. By analogy and because the H-3, H-4, H-9 and H-14 resonances of both triesters are essentially identical, we assume that the a-methylbutyryl group of triester 3b is on C-14 as well.

The 10 diesters 4a or a'-4j or j', almost all present in only very small amounts, were difficult to separate even

by HPLC and five of them were obtained only in the form of two-component mixtures 4e or e' with 4f or f', 4g or g' with 4h and 4i or i' with 4j or j'. The basic carbon skeleton and the stereochemistry was deduced by extensive decoupling of the ¹H NMR spectra and comparison with data in the literature [4]; the nature of the various ester functions was deduced from the mass and ¹HNMR spectra and, in the case of 4b, 4c, 4e (or e') and 4f (or f') also from the ¹³C NMR spectra. Similar compounds (4f or 4f', 4j and 4j', and 4k or 4k') have been reported from T. vautheri and T. antimenorrhea [4]. While the differences in the ¹H NMR spectra of 4j and 4j', one of which must be identical with one of our compounds from T. grisebachii, were insignificant [4], the ester distibution in 4j, and by exclusion that in 4j', was established by partial saponification of 4j to 4l. Since partial saponification of the two remaining diesters was unsuccessful they were provisionally assigned formulas 4f' and 4k', respectively [4]. In the case of our six diesters 4a or a'-4f or f', each containing a β -hydroxyisovaleryl residue, one might draw the inference that the constancy of the H-14 resonance (δ 5.50–5.52), contrasted with the somewhat greater variability of the H-3 resonance ($\delta 4.95-\delta 5.01$ —see Table 1), indicates the attachment in all six compounds of the β -hydroxyisovalerate residue to C-14. However, in the diesters 4g or g', 4j or j' and the triesters 3a, b, all of which differ in the nature of the ester residues attached to C-14, the frequency of H-14 covers nearly the same narrow range, i.e. δ 5.48–5.49.

Examination of Table 1 and Table 1 of ref. [4] reveals, however, that the diesters can be divided into two groups—those whose H-4 resonance are found in the range $\delta 4.93$ –4.95 and those whose H-4 signal occurs in the range $\delta 4.84$ –4.86, and that H-4 of both 4j and 4j' [4] resonates at the higher frequency. It is reasonable therefore to suppose that the presence of an angelate, tiglate or epoxyangelate on C-3 is responsible for the paramagnetic shift of H-4 and that formulas 4a–d and 4h can be assigned to five of our 10 diesters. That the effect of an unsaturated side chain at C-3 is exerted in the neighbourhood of C-4 may be deduced also by comparing the

chemical shift of C-4 in 4c (Table 3) with the chemical shift of C-4 in 4b, 4e (or 4e') and 4f (or 4f'). In all other respects the 13 C NMR spectra of the sesquiterpene nuclei in the diesters are essentially identical. The generalization extends to triester 3a where only the frequencies of C-8, C-9 and C-10 depart in a predictable way from the corresponding signals of the diesters. Attempts to provide more secure evidence for the location of the two different acyl groups on the carbon skeleton of 4b by detecting long range 13 C- 14 H couplings to the various carbonyl groups failed because of sample size and instrumental difficulties but did permit assignment of the δ 176.97 signal to the lactone carbonyl (three bond couplings to H-13), thus correcting an earlier assignment [2].

Small amounts of two additional sesquiterpenoids 5a and 5b were obtained from T. grisebachii, 5a being

isolated only in admixture with 2. That both were derivatives of germacrene A (6) with oxygenation at C-9, C-12, C-14 and C-15 was clear from the ¹H and ¹³C NMR spectra (Tables 2 and 3), comparison with spectra of related compounds and decoupling experiments. The absence of NOE's between H-1 or H-5 and any of the two proton AB systems of H-12, H-14 and H-15 showed that the 1(10)-double bond was E and the 4,5-double bond was Z. The stereochemistry at C-9 follows from the coupling constants if it is assumed that the C-7 side chain is equatorial and that the 10-membered ring adopts the favoured crown conformation. The nature of the four acyl residues two acetates, one isobutyrate and one xhydroxyisovalerate in 5a and one α-methylbutyrate in 5b replacing the isobutyrate of 5a—was also deduced from the NMR spectra, but their distribution over the carbon

Table 1. ¹H NMR spectra of compounds 3a-c, 4a-j (270 MHz, CDCl₃)

_	3a	39	ઝુ	4a	4 b	4c	P	4e, 4j	4g	* 4	4i, 4j
	2.90 dd (11.5, 7)	2.92	2.93	3.15 dd (11.5, 7)	3.15	3.15	3.19	3.16	3.15	3.17	3.16
_	1.51 dd (11.5, 2)	1.52	obsc.	1.47 dd (11.5, 2)	1.4	1.45	1.46	1.44	1.45	1.43	1.48
	~ 2.40	~ 2.45	~ 2.40	2.42 br dt (7, 2.5)	2.38	2. 4.	2.41	2.38	~ 2.40	2.38	2.40
3	5.01 dd (2.5, 2.5)	4.99	4.96	4.97 dd (2.5, 2.5)	4.95	5.01	5.01	4.96, 4.95	4.95	5.01	4.96
	4.90 dd (3, 2)	4.92	4.90	4.94 dd (3, 2)	4.84	4.95	4.94	4.86	4.85	4.93	4.86
	~ 2.50		opsc.	2.61 ddd (9, 8.5, 6.5)	2.60	5.60	2.61	2.60	2.62	2.59	2.62
_	2.21 dd (16, 8)		opsc.	2.23 dd (15, 8)	2.23	2.22	2.24	2.22	2.23	2.22	2.24
_	1.99 ddd (16, 6, 6)		opsc.	1.88 ddd (15, 7, 5)	1.87	1.89	1.91	1.87	1.88	1.87	1.88
	5.28 br t (6)		5.27	4.44 br t (4.5)	4.42	4.43	4.44	4.43	4.43	4.42	4.42
_	~ 2.40	~ 2.40	opsc.	2.19 dd (5, 1.5)	2.19	2.20	2.22	2.19	2.20	2.19	2.19
+	1.40 s	1.42	1.39	1.61 s	1.61	19.1	1.62	1.59	1.60	1.59	1.60
7	5.50 d (9)	5.50	4.54	5.50 d (9)	5.50	5.50	5.52	5.50	5.49	5.481	5.49
	6.58 s	6.57	6.55	6.52 s	6.50	6.52	6.54	6.52, 6.51	6.52	6.51	6.53
	A, A'	A, A′	A, A'	Ą	A	V	A	A, A‡	B‡	В	B, B‡
_	iVal	MeBu		Tig	MeBu	Ang	Epoxy Ang	AcB, AcA‡	MeBu‡	Ang	AcB,
											AcA‡

*Chemical shifts from mixture of 4g and 4h.

†Intensity three protons.

‡ or vice versa 4e, 4f, 4g, 4i, 4j.

A = 2.57 d (1.4) (2H), 1.32 s, 1.31 s. A' = 2.53 d (1.5) (2H), 1.30 s, 1.29 s. AcA = 2.59 d (14.5), 2.85 d (14.5), 1.52 s, 1.52 s, 2.01 s. B = 2.56 dq (7,7), 4.11 dq (7,7), 1.24 d (7), 1.124 d (7), 1.13 d (7,7), 1.27 d (7), 1.18 d (7), 2.07 s. Ang = 6.16 dq (7,1.5), 1.99 dq (7,1.5), 1.87 br (1.5). Epoxy-Ang = 3.07 q (5), 1.34 d (5), 1.57 s. ival = 2.18 d (7), 2.11 m, 0.96 d (7), 0.97 d (7). MeBu = 2.34 ddq (7,7,7), 1.68 ddq (14,7,7), 1.48 ddq (14,7,7), 0.90 t (7), 1.14 d (7). Tig = 6.86 qq (7,1.5), 1.79 dq (7,1.5), 1.81 q (1.5).

Table 2.	. ¹³ C NMR spectra of compounds 3a , 4b , 4c , 4e , f and 5b (67.89 MHz,
	CDCL ₂)*

C	3a	4b, 4c	4e	4f‡	5b
1	43.93 t	41.99 t	42.07 t	42.04 t	129.95 da
2	40.40 d	40.62 d†	40.66 d	40.62 d	28.44 t
3	76.34 d†	76.59 d†	76.68 d†	76.48 d	34.32 t
4	74.33 d†	74.04 d†	73.12 d†	74.62 d†	134.78 sb
5	117.20 s	118.02 s	118.04 s	117.88 s	130.19 da
6	54.22 s	53.87 s	53.93 s	53.84 s	30.91 t
7	49.34 d	49.90 d†	49.49 d	49.32 d	41.22 de
8	38.16 t	41.01 t‡	41.00 t	41.01 t	40.10 t
9	74.24 d†	73.10 d†	73.12 d†	73.08 d†	75.29 d ^d
10	60.49 d	62.02 d†	62.04 d	62.06 d	135.21 s ^b
11	49.70 s	49.43 s	49.96 s	49.84 s	147.74 s
12	176.13 s	176.97 s	177.00 s	176.77 s	112.94 t
13	19.87 q†	20.06 q†	20.04 q	20.06 q	63.64 t^{θ}
14	95.18 d†	95.63 d+	95.64 d	95.59 d	$63.90 t^{\theta}$
15	140.62 d†	139.87 d†	139.90 d	139.99 d	$66.92 t^{\theta}$
1	171.46 s	170.92 s	170.91 s	170,90 s	174.54 s
2	46.89/46.74 1†	46.80 t	46.82 t	46.79 t	$73.14 d^{d}$
3	69.20/69.12 s	69.17 s	69.17 s	69.18 s	32.20 d
4	29.30 q†	29.32 q†	29.32 q	29.32 q	18.85 q
5	29.23.4†	29.23 q	29.23 q	29.23 q†	16.57 q
1'	170.68 s	175.64 s	166.57 s	172.85 s	170.90 s
2'	41.47 t	41.06 d	127.14 s	44.50 d	$41.22 d^{\circ}$
3'	25.60 d†	26.42 t	140.33 d	70.82 d	26.72 t
4′	22.37 q	16.24 q†	20.34 q	17.59 q†	11.54 q
5'	22.37 q†	11.41 g†	15.87 q	12.25 q+	16.10 q
OAc	e :		170.34 s	******	170.59 s
			21.07 q†		170.59 s
	en				21.12 q
					20.89 q
1'			169.26 s	10000	**********
2'	40.0		obsc		
3′			79.19 s		
4', 5'			26.58 q	-	
OAc	. ====	ě	170.47 s		
			22.27 q		

^{*}Multiplicities established by DEPT pulse sequence.

skeleton remained uncertain although presumably the two compounds differ from each other only in substitution of the α -methylbutyrate for the isobutyrate at the same locus. A series of related diesters of type 7 has been isolated from T. vautheri [4].

The triterpene and plant sterol fraction of *T. grisebachii* contained in addition to commonly encountered substances the somewhat rarer dammarane derivatives dipterocarpol and 3-(0)acetyldammarenediol-II ([3S,20S]-3-acetoxy-20-hydroxydammar-24-ene) [12]. To the best of our knowledge the latter has been encountered only once previously as a natural product [13].

EXPERIMENTAL

General. For separation of mixtures HPLC using a differential refractometer was used. The column employed was a Sil C-18

column (10 μ m, 10 mm i.d. × 50 cm). R_t 's were measured from the solvent peak.

Plant material. Aerial parts of Trixis grisebachii O. Kuntze were collected on 22 August 1986 at the flowering stage in Timbo Viejo, Departamento Burruyacu, Tucumán Province, Argentina. A voucher specimen (P. R. Lgname 9276) is deposited in the herbarium of the Instituto Miguel Lillo.

Extraction. Flowers and leaves (507 g) were extracted with CHCl₃ (2×6 l) at room temp. for 7 days to give 33 g (6.5%) of crude ext which was suspended in 570 ml of EtOH at 50–55°, dil with 375 ml of H₂O and extracted successively with *n*-hexane (3 × 500 ml) and CHCl₃ (3 × 500 ml). Evapn of the hexane fr gave 23.6 g of residue which was dissolved in heptane–EtOAc (2:1), decolorized with charcoal, filtered and evapd. The residue was chromatograped over silica gel (600 g) using hexane and increasing amounts of Et₂O (from 20 to 65%), all frs being monitored by TLC. Fractions with higher R_f than β -amyrin (hexane–EtOAc,

[†]Assignments by single frequency heteronuclear decoupling.

[‡]Chemical shifts of a mixture 3:1 of 4e and 4f.

a-e Assignments may be interchanged.

Table 3. ¹H NMR spectra of compounds 5a and 5b (270 MHz)

	5a		5b*
H	CDCl ₃	CDCl ₃	C ₆ D ₆ †
1	5.66 dd (10, 7)	5.66 dd (10, 7)	5.50 br dd (10, 7)
2a	obsc.	2.58 m	2.56 m
2b	obsc.	obsc.	~1.95
3a	obsc.	obsc.	2.21 m
3b	obsc.	obsc.	1.83 m
5	~ 5.60	~ 5.60	5.34 br t (8)
6a	obsc.	obsc.	$\sim 2.20-2.25 m$
6b	obsc.	obsc.	
7	obsc.	obsc.	2.45 m
8a	1.89 dd (15, 5)	1.88 dd (15, 5)	1.94 dd (15, 5)
8b	obsc.	obsc.	~1.70
9	5.51 dd (5, 1.5)	5.52 br d (5)	5.67 dd (5, 1.5)
12a	5.10 br s	5.10 br s	4.91 br s
12b	5.00 br s	$5.00 \ br \ s$	4.85 br s
13a	4.71 d (14)	4.69 d (14)	(4.83 d (12)
13b	4.64 d (14)	4.63 d (14)	4.29 d (12)
14a, b	({ 4.73 d (12)	$(\int 4.72 d(12))$	(4.76 d (12.5)
	4.20 d (12)	$\int \{4.22 \ d\ (12)$	4.61 d (12)
15a,b	\ \(\) \(\	\ \ \ 4.62 \ d \ (14)	(4.61 d (13.5)
•	(4.53 d (13.5)	4.50 d (14)	4.51 d (12.5)
OAc	2.03 s	2.04 s	1.71 s
2.00s	2.00 s	2.00 s	1.66 s
2-OH i V	a1		
2-011 t v 2	4.07 d (4)	3.96 d (4)	4.11 d (4)
3	2.13 dq (7, 4)	2.10 dq (7, 4)	2.13 dq (7, 4)
4	1.03 d (7)	1.04 d (7)	1.04 d (7)
5	0.89 d (7)	0.89 d (7)	0.96 d (7)
-	0.07 2 (7)	0.07 % (1)	0.504 (1)
MeBu		226 11 (7.7.7)	226 11 (7.7.7)
2	~	2.36 ddq (7, 7, 7)	2.26 ddq (7, 7, 7)
3a		1.71 ddq (14, 7, 7)	1.75 ddq (14, 7, 7)
3b		1.52 ddq (14, 7, 7)	1.43 ddq (14, 7, 7)
4		0.92 t (7)	0.88 t (7)
5	-	1.17 d (7)	1.14 d (7)
iBu			
2	2.59 hept (7)	arrown.	_
3	1.19 d (7)		_
4	1.19 d (7)	_	_

^{*}Chemical shifts from mixture of 2 and 5a.

5:2) were combined to yield 16.3 g of waxy material which was not examined further. Fractions 9–12 which showed two major spots on TLC, the lower with the same R_f as β -amyrin, were combined (1.3 g); a small portion of this material was processed by RP-HPLC (MeOH, 4 ml/min) to give crystalline palmitic acid (3.6 mg, R_f 9.8 min, identified by M and NMR), 3-O-acetyldammarenediol-II (8, [3S, 20S]-3-acetoxy-20-hydroxydammar-24-ene, 7.4 mg, R_f 14.5 min), lupeol (11 mg, R_f 34 min), β -amyrin (4.6 mg, R_f 39.5 min). Fractions with R_f 6, 7.5, 29 and 45.5 min were discarded. Fractions 13–19 which showed one major spot were combined (1.9 g). A small portion of this material was subjected to HPLC (MeOH, 3 ml/min) to give 5.2 mg of germanicol (R_f 6 min), dipterocarpol (9, [20S]-20-hydroxydammar-24-en-one, 25 mg, R_f 11.5 min), β -amyrin (6.0 mg, R_f 45 min) and α -amyrin (4 mg, R_f 55.5 min). Frs R_f 8.5, 19 and 21 min were

discarded as were frs 20 and 21 of the CC (58 mg). Frs 22-24 of the CC contained primarily stigmasterol and sitosterol. Compounds **8** and **9** were identified by MS which exhibited fragmentation patterns typical of a 3-acetoxy- and a 3-keto-20-hydroxydammar-24-ene and by NMR, for **8**, 5.11 tt (J=7, 1.5 Hz, H-24), 4.48 dd (J=10, 6 Hz, α -orientated H-3), 2.02 (Ac), 1.68 br s and 1.62 br s (H-26 and H-27), 1.14 s (H-21), 0.98 s (8-Me), 0.87 s, 0.84 s, 0.84 s, 0.84 s (4α , β , 10, 14-Me) [12], for **9**, 5.13 br t (J=7 Hz, H-24), 2.4 m and 2.35 t (H-2a, b), 1.70 br s and 1.63 br s (H-26 and H-27), 1.18 (H-21), 1.09 (4β -Me), 1.05 (4α -Me), 1.01 (8-Me), 0.97 (10-Me) and 0.90 (14-Me) [14] which showed that the C-20 configuration was S rather than R. This was also evident from the 13 C NMR spectrum of **9** which exhibited the C-21 and C-22 frequencies for a 20S rather than a 20R epimer at δ 25.51 and 40.54, respectively [15].

[†]No change on addition of TAI except for 2-OH iVaI H-2, 5.00 d (4); H-4, 0.97 d (7), H-5, 0.92 d (7), and the AB system from 4.61-4.51 to 4.72 d (12)-4.41 d (12).

Evapn of the CHCl₃ extract gave a residue (5.5 g) which was chromatographed over silica gel (260 g) using CHCl₃ and increasing amounts of Et₂O (0-40%), 124 frs being collected. Frs 1-4 were discarded. HPLC of fraction 5 (MeOH-H₂O, 4:1) gave frs whose properties were reminiscent of the trixanes from T. praestans [11] but which decomposed before they could be examined in detail. Frs 6-12 were combined; a small portion on HPLC (MeOH-H₂O 4:1, 3 ml/min) yielded 10 mg of 2 (R_i 18 min) whose MS and ¹H NMR spectrum corresponded to the lit [7], 12 mg of ε mixt of 2 and 5a (R_t 19.5 min) and 10 mg of 5b (R, 25 min). Frs 12-28 were discarded. Frs 29-38 were combined; a portion processed by HPLC (MeOH-H₂O 2:1, 3 ml/min) gave 4 mg of **3b** (gum, R_t 37.5 min) and 35 mg of **3a** (gum, R_t 39.5 min). Frs 39-49 were mainly mixts of 4a and 4b with a small amount of 3a. Frs 50-61 were combined; a portion processed by HPLC gave 1.2 mg of 4a slightly contaminated by 4b (R_i 39.1 min), 15 mg of **4b** (solid, R_t 42.6 min) and 16 mg of **4c** (solid, R_t 43.7 min.). Frs 62-7; were mixts. Frs 72-79 were combined; a portion subjected to HPLC (MeOH-H2O 2:1, 2.5 ml/min) gave 2.5 mg of 4d (gum, R_t 8 min), 8 mg of a 3:1 mixt of 4e (or 4e') and 4f' (or 4f') (gum, R_0 , 15.5 min), 2.5 mg of 4g or 4g' (gum, R_0 , 26 min) and 4 mg of a 1:1 mixt of 4g (or 4g') and 4h (gum, R_t 27 min). Frs 80-95 were a mixt of 4d, 4e (or e'), 4f (or f') and small amounts of 4i and 4i (or 4i' and 4i'). Frs 96-108 on HPLC (MeOH-H₂O 2:1, 2.5 ml/min) gave 1.6 mg of a 2:1 mixt of 4i and 4j (gum, R_i

(2R*,3S*,4R*,6R*,7R*,8R*,10R*,11R*,14S*)-3,9-Di-(3-hydroxy-3-methylbutanoyloxy)-14-(3-methylbutanoyloxy)-14,15-epoxytrix-5(15)-en-4,12-olide (3a). Gum; 1R v_{max}^{KBr} cm $^{-1}$: 3500, 1760, 1730, 1665; EIMS m/z (rel. int. %) 578 (0.7, [M]*), 478 (5.5, [M-C₅H₈O₂]*), 460 (2.2, [M-C₅H₁₀O₃]*), 378 (100, [M-2 C₅H₈O₂]*), 361 (24.1), 360 (21.7), 359 (39.5), 343 (21.2), 334 (43.9), 332 (51.1), 316 (12.1), 276 (6.8), 259 (5.8); PCIMS m/z (rel. int. %) 579 (25.0, [M+1]*), 561 (4.2), 479 (9.9), 461 (100), 443 (40.9), 379 (5.1), 361 (33.7), 345 (13.2), 343 (6.9), 317 (7.4), 299 (4.5), 277 (11.1), 259 (6.0), 243 (2.2), 119 (99.1), 103 (9.1), 101 (80.8), 85 (3.7), 83 (4.9); 1 H and $^{1.3}$ C NMR spectra in Tables 1 and 3.

Hydrolysis of 3 mg of 3a in 1 ml of MeOH with 10 mg of K_2CO_3 in 0.1 ml of H_2O for 30 min at room temp followed by the usual work-up afforded 2 mg of 3c whose ¹H NMR spectrum is listed in Table 1.

 $\begin{array}{lll} (2R*,3S*,4R*,6R*,7R*,8R*,10R*,11R*,14S^*)-3,9-(Di-(3-hy-droxy-3-methylbutanoyloxy)-14-(2-methylbutanoyloxy)-14,15-epoxytrix-5(15)-en-4,12-olide(3b). Gum; IR <math>\nu_{\max}^{\rm RB}$ cm $^{-1}$: 3478, 1750, 1730, 1665; EIMS m/z (rel. int.%) 578 (0.8, [M] $^+$), 478 (3.9, [M $-{\rm C}_5{\rm H}_8{\rm O}_2{\rm J}^+$], 460 (1.2, [M $-{\rm C}_5{\rm H}_{10}{\rm O}_3{\rm J}^+$), 378 (100, [M $-2{\rm C}_5{\rm H}_8{\rm O}_2{\rm J}^+$), 361 (22.1), 360 (23.7), 359 (38.2), 343 (22.3), 334 (74.2), 332 (90.1), 276 (55.5), 259 (71.3), 241 (16.3), 101 (14.2), 85 (38.1), 83 (43.4); PCIMS m/z (rel. int. %) 579 (12.1, [M $+{\rm I}_3^+$), 561 (3.3) 479 (5.5), 461 (100), 443 (48.4), 379 (4.6), 361 (43.8), 345 (13.5), 343 (9.7), 317 (6.2), 299 (3.6), 277 (3.2), 277 (3.2), 259 (10.5), 243 (4.0), 119 (76.9), 103 (18.5), 101 (93.0), 85 (7.0), 83 (8.1); $^1{\rm H}$ NMR spectrum in Table 1.

(2R*,3S*,4R*,6R*,7R*,8R*,10R*,11R*,14S*)-9-Hydroxy-14-(3-hydroxy-3-methylbutanoyloxy)-3-tiglyloxy-14,15-epoxytrix-5(15)-en-4,12-olide (4a). Gum; EIMS m/z (rel. int. %) 476 (0.2, [M]*), 359 (3.3), 332 (1.5), 294 (5.6), 276 (4.5), 259 (1.3), 258 (0.7), 248 (15.5), 230 (1.7), 221 (12.2), (1.3), 100 (0.9), 73 (19.7), 55 (48.9); PCIMS m/z (rel. int. %) 477 (2.7, [M+1]*), 459 (0.5), 378 (5.5), 377 (12.9), 376 (3.8), 362 (11.8), 361 (53.4), 360 (23.9), 359 (97.5), 358 (7.2), 341 (13.3), 333 (2.9), 277 (58.5), 261 (8.1), 259 (70.6), 249 (3.9), 231 (14.4), 215 (11.4), 119 (27.3), 101 (100), 83 (26.7); ¹H NMR spectrum in Table 1.

(2R*,38*,4R*,6R*,7R*,8R*,10R*,11R*,14S*)-9-Hydroxy-14-(3-hydroxy-3-methylbutanoyloxy)-3-(2-methylbutanoyloxy)-14,15-epoxytrix-5(15)-en-4,12-olide (4b). Mp 228-231°; IR $v_{\text{max}}^{\text{KB}}$ cm⁻¹: 3415, 1758, 1730, 1665; EIMS m/z (rel. int. %) 478 (0.2, [M]⁺), 378 (1.9), 361 (4.9), 334 (2.8), 294 (11.4), 276 (3.8), 259 (1.7), 258 (0.7), 248 (16.6), 230 (2.3), 117 (3.2), 85 (26.9), 57 (100); PCIMS m/z (rel. int. %) 479 (2.7, [M+1]⁺), 461 (0.2), 378 (2.6), 377 (2.8), 362 (22.4), 361 (100), 277 (10.0), 259 (34.7), 231 (5.8), 215 (2.7), 119 (26.1), 103 (11.3), 101 (42.6), 85 (12.6); ¹H and ¹³C NMR spectra in Tables 1 and 2.

(2R*,3S*,4R*,6R*,7R*,8R*,10R*,11R*,14S*)-3-Angelyloxy-9-hydroxy-14-(3-hydroxy-3-methylbutanoyloxy)-14,15-epoxy-trix-5(15)-en-4,12-olide (4c). Mp 188–190°; IR v_{max} cm⁻¹: 3430, 1756, 1728, 1662; EIMS *m/z* (rel. int. %) 476 (0.1, [M]*), 359 (4.7), 294 (18.4), 276 (7.7), 259 (1.7), 258 (1.1), 248 (17.0), 230 (1.8), 221 (1.3), 118 (1.2), 100 (0.7), 83 (100), 55 (52.5); PCIMS *m/z* (rel. int. %) 477 (4.1, [M+1]*), 459 (0.5), 378 (3.1), 377 (7.3), 362 (12.2), 361 (57.8), 360 (22.9), 359 (100), 358 (3.4), 341 (6.5), 333 (1.1), 294 (2.2), 277 (20.1), 261 (6.7), 259 (54.1), 249 (1.6), 231 (10.9), 215 (3.6), 119 (65.7), 101 (87.9), 83 (54.0); ¹H and ^{1.3}C NMR spectra in Tables 1 and 2.

(2R*,3S*,4R*,6R*,7R*,8R*,10R*,11R*,14S*)-3-(2.3-Epoxy-2-methylbutanoyloxy)-9-hydroxy-14-(3-hydroxy-3-methylbutanoyloxy)-14,15-epoxytrix-5(15)-en-4,12-olide (4d). Gum: EIMS m/z (rel. int. %) 492 (4.7. [M]*), 448 (3.2), 393 (5.7), 392 (26.0), 377 (2.7), 375 (50.4), 374 (8.3), 348 (70.5), 294 (13.9), 276 (19.1), 259 (18.2), 258 (8.4), 248 (45.2), 230 (22.6), 118 (13.5), 116 (21.0), 110 (18.2), 99 (10.6), 73 (19.9), 71 (25.8); PCIMS m/z (rel. int. %) 493 (41.7. [M+1]*), 475 (2.7), 394 (6.7), 393 (30.6), 392 (4.1), 378 (3.8), 377 (15.9), 376 (22.6) 375 (100), 359 (5.1), 357 (8.1), 349 (2.2), 293 (1.4), 277 (43.1), 261 (14.2), 259 (26.7), 249 (3.5), 231 (6.4), 215 (15.9), 119 (57.5), 117 (20.2), 101 (56.8), 99 (8.8); ¹H NMR spectrum in Table 1.

(2R*, 3S*, 4R*, 6R*,7R*,8R*,10R*,11R*,14S*)-9-Hydroxy-14 or 3-(3-hydroxy-2-methylbutanoyloxy)-3 or 14-(2-methylbutanoyloxy)-14,15-epoxytrix-5(15)-en-4,12-olide (4g or 4g'). Gum; IR $v_{\rm max}^{\rm KBr}$ cm⁻¹: 3460, 1755, 1720, 1670 cm⁻¹; EIMS m/z (rel. int. %) 478 (2.2, [M]*), 378 (25.0), 361 (40.0), 334 (22.8), 294 (81.5), 276 (25.5), 259 (7.9), 258 (9.9), 250 (49.5), 248 (100), 230 (13.1), 221 (3.0), 117 (8.9), 101 (23.9), 85 (40.7), 73 (15.0), 57 (69.2); PCIMS m/z (rel. int. %) 479, (8.5, [M+1]*), 461 (0.2), 379 (8.3), 377 (4.7), 362 (21.4), 361 (100), 359 (8.7), 343 (5.2) 294 (0.7), 277 (14.0), 261 (8.8), 259 (29.2), 249 (1.2), 231 (5.5), 215 (4.7), 119 (86.2), 103 (28.2), 101 (93.6), 85 (7.2); ¹H- and ¹³C NMR spectra in Tables 1 and 2.

Mixture of 4e (or 4e') and 4f (or 4f'). Gum; EIMS m/z (rel. int. %) 536 (1.0, [M]+), 436 (4.0), 419 (11.0), 408 (3.2), 392 (4.6), 376 (2.2), 294 (12.5), 276 (5.2), 259 (3.3), 258 (1.8), 248 (15.9), 230 (2.7), 221 (1.5), 161 (2.2), 143 (22.0), 117 (3.9), 101 (7.0), 83 (100), 55 (11.8); PCIMS m/z (rel. int. %) 537 (9.3, [M+1]+), 519 (0.3), 479 (4.3), 477 (1.2), 437 (7.7), 419 (53.7), 377 (4.5), 359 (20.6), 277 (14.7), 261 (14.2), 259 (8.9), 249 (1.5), 231 (2.9), 215 (7.3), 161 (68.5), 193 (47.8), 119 (83.3), 101 (100); 1 H and $^{1.3}$ C NMR spectra in Tables 1 and 2.

Mixture of 4g (or 4g') and 4h. Gum; IR and MS essentially identical with that of pure 4g (or 4g'); ¹H NMR spectrum of 4h taken from spectrum of mixt in Table 1.

Mixture of **4i** (or **4i**') and **4j** (or **4j**'). Gum; $1R_{max}^{NRi}$ cm⁻¹: 3460, 1753, 1735, 1665; EIMS m/z (rel. int. %) 536 (0.5, [M]⁺), 436 (5.0), 419 (12.1), 408 (3.1), 259 (6.3), 258 (2.5), 248 (38.7), 230 (6.5), 221 (2.5), 161 (7.2), 143 (53.0), 117 (5.4), 101 (17.2), 83 (100), 55 (12.0); PCIMS m/z (rel. int. %) 537 (8.9, [M+1]⁺, 477 (1.2), 437 (5.4), 419 (24.6), 359 (17.9), 294 (0.2), 277 (18.2), 261 (17.9), 259 (9.1), 231 (3.3), 215 (6.8), 161 (95.5), 143 (57.8), 119 (88.3), 101 (100), 85 (21.3).

(7S*.9S*)-9,12,14,15-Diacetoxy)-2-Hydroxy-3-methylbutanoyloxy, 2-methylbutanoyloxygermacra-1(10),4,11(13)-triene (5b). Gum; IR v^{KB}_{max} cm⁻¹: 3480, 1735; EłMS m/z (rel. int. %) 536 (0.2, [M]*), 477 (28.9), 435 (2.3), 419 (9.4), 418 (26.3), 404 (9.9), 403

(25.3), 316 (11.7), 315 (47.6), 314 (35.2), 257 (12.0), 216 (11.6), 215 (48.4), 214 (50.89), 213 (12.9), 199 (28.6), 198 (52.1), 197 (100), 196 (81.2), 195 (16.8), 183 (33.0), 157 (37.1), 143 (31.9), 85 (32.7), 73 (13.0), 57 (28.2); PCIMS m/z (rel. int. %) 537 (0.6, $[M+1]^+$), 478 (28), 477 (100), 435 (3), 419 (30.0), 417 (8.5), 405 (5.9), 375 (21.3), 315 (69.2), 299 (3.0), 277 (9.9), 257 (11.9), 215 (25.8), 197 (27.4), 119 (6.2), 103 (9.1); ¹H and ¹³C NMR spectra in Tables 2 and 3.

Acknowledgement—Work in Tucumán was supported by grants from Consejo Nacional de Investigaciones Científicos y Técnicos de la Republica Argentina and Consejo de Investigaciones de la Universidad de Tucumán.

REFERENCES

- 1. Bohlmann, F. and Zdero, C. (1979) Chem. Ber. 112, 427.
- 2. Bohlmann, F. and Zdero, C. (1979) Chem. Ber. 112, 435.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H., (1979) Phytochemistry 18, 855.
- 4. Bohlmann, F., Suwita, A., Jakupovic, J., King, R. M. and Robinson, (1981) *Phytochemistry* 20, 1649.

- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1983) Phytochemistry 22, 1201.
- Singh, P., Jakupovic, J. and Bohlmann, F. (1985) Phytochemistry 24, 1525.
- 7. Dominguez, X. A., Singh, P. and Bohlmann, F. (1985) Rev. Latinoam. Quim. 16, 47.
- 8. Zdero, C., Bohlmann, F., King, R. M. and Robinson, H. (1986) Phytochemistry 25, 2873.
- Gonzalez, A. G., Bermejo Barrera, J., Hernandez, C. Y., Peraza Perez, P. and Zaragoza Garcia, T. (1987) Anal. Quim. Ser. C. 80, 319.
- Zdero, C., Bohlmann, F., Solomon, J. and Dominguez, X. A. (1988) Phytochemistry 27, 849.
- de Riscala, E. C., Catalán, C. A. N., Sosa, V. E., Gutiérrez, A. B. and Herz, W. (1988) Phytochemistry 27, 2343.
- 12. Biftu, T. and Stevenson, R. (1978) J. Chem. Soc. Perkin I 360.
- Fattorusso, E., Santacroce, C. and Xaasan, C. F. (1985) *Phytochemistry* 24, 1035.
- Cheung, H. T., Wong, C.-S. and Yan, T. C. (1969) Tetrahedron Letters 5077.
- Asakawa, J., Kasai, R., Yamasaki, K. and Tanaka, O. (1977) Tetrahedron 33, 1935.